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Density of states from the continued fraction expansion: an 
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Received 21 September 1992. in final form 18 May 1993 

Abstract. In lhis paper different methods for the calculation of densities of stam and other 
physical quanlities by their continued fraction expansions are wmpared, and a new lechnique is 
presented. Continued fraction expansions mncated al different orders are wnsidered as lhe terms 
of a sequence convergent to a iimiling value. The philosophy of the method is lhe acceleration 
of such a sequence by means of appropriate algorithms. Operaring in this way, we o k m e  a 
net reduction of spurious unphysical features of numerical origin in the resulfs. 

1. Introduction 

The continued fraction method [ I ,  21 is a very powerful tool for the evaluation of properties 
of physical systems. Nevertheless, in applying it to practical cases a number of problems 
arise; among these, the most important is termination. In fact, although a continued fraction 
is in general made of infinite levels, we can deal only with a finite number of coefficients. 
So the quantity calculated is an approximation, and we meet the problem of how to make 
this approximation the best. 

In some cases so many coefficients are available that the result is in practice the same 
as we could obtain with an infinite number of recursion levels [3,4], but in general this is 
not possible. When we have only a few parameters and we tly to evaluate the continued 
fraction we obtain in the result a number of features with an unphysical origin. In order to 
overcome this difficulty, and to extract the maximum physical information from a given set , 

of coefficients, a number of approximations have been proposed. 
In what follows we will consider as the quantity of interest the electronic density of states 

(DOS) of a solid. If it is possible to individuate one or more connected bands the introduction 
of a terminator (whose analytical form is given in terms of the band limits) is possible [5]. 
More generally, a terminating procedure, based on orthogonal polynomials to approximate 
a density of states with an arbitrary number of connected bands with van Hove singularities, 
has  been proposed [6]. This class of~methods can be easily extended to systems made up of 
single components with well defined band limits, building average terminators [7,8]. In an 
equivalent way we can evaluate a sequence of asymptotical coefficients and append them to 
the continued fraction. Such a sequence may be extrapolated by the knowledge of the first 
pairs of exacl coefficients [9, IO]. Operating in this way further improvement is possible 
by choosing the appending procedure in an appropriate. way [I I]. Extrapolation techniques 
may be also applied directly to the continued fraction itself, represented by means of some 
orthogonal polynomials (e.g. Chebyshev polynomials [ 121). 

Another approach to the problem of truncation of continued fractions is the so-called 
maximum entropy procedure [13-151, in which we obtain the DOS by maximizing the 
entropy of the information contained in the coefficients at our disposal. 
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The method proposed in this paper is based on the convergence acceleration of the 
sequence of values of the DOS calculated with different numbers of continued fraction 
levels by means of a procedure derived in the framework of the Pad6 approximant theory: 
the e-univariate algorithm [16]. The use of Pad6 approximants to improve the convergence 
of the expansion of physical quantities has already been used in the literature. In particular, 
if we use the moments of the Hamiltonian to expand the Green function as a power series, 
quadratic Pad6 approximants of the density of states may be calculated [17,18]. 

The present paper is organized as follows. A critical analysis of different techniques of 
termination is given in section 2. Section 3 is devoted to a presentation of the accelerated 
convergence procedure, and in section 4 its application to the calculation of densities of 
states is considered. Scction 5 containsconclusions. 

2. Different methods for the determination of the density of states 

2.1. Termination procedures hased on a knowledge of some features of the densiry of states 

We briefly recall the definition of the continued fraction termination procedure: the 
substitution of a continued fraction by a smaller one whose nth level has the form 

E - a ,  -hi  tn (E) .  (1) 

The function t , (E)  is called the terminator of the continued fraction. In many cases 
additional physical information can be used in the determination of the density~ of states; 
this information is essentially the position of band edges and the presence of van Hove 
singularities. Turchi and co-workers [5] have shown the relation between the position of 
the band edges and the asymptotic behaviour of the continued fraction coefficients. This 
fact may be used to write down the explicit form of analytical terminators in the case of 
dsnsities of states composed of one or more connected bands. For example, in the simplest 
case of one single connected band it follows that the coefficients a, and h, follow damped 
oscillations around their asymptotic values a and h, so the one-band terminator is given by 
the solution of the equation 

1 
t ( E )  = 

E - a - h2 t ( E )  ' 

Equation (2) is quadratic, and therefore has two solutions; we choose the solution which 
gives the correct behaviour for E 4 &oo. In more complex wes of several connected 
bands the oscillations of the coefficients are not damped, but an analytical expression for 
the terminator is still possible. As an example, in figure 1 we present the density of states 
of silicon calculated with 150 exact levels of the continued fraction and the two bands 
terminator. 

Following this line of thought, the next step is to exploit other known features of 
the density of states (such as intemal van Hove singularities). Operating this way [6] it is 
possible to obtain more accurate results. In practice, the procedure is the following: suppose 
we have only the first n coefficients of a continued fraction expansion; first we construct 
a model density of states having known physical features (e.g. band limits and van Hove 
singularities) and by means of orthogonal polynomials we derive the coefficients of its 
continued fraction expansion. and the analytical tail. Then, the terminator so calculated 
is appended to the 'true' continued fraction. In figure 2 we report the density of states 
for GaAs, which is a three-band system; the continued fraction is terminated with a tail 
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Figure 2. Density of stales for gallium arsenide calculated with 100 emcl levels of the continued 
fraction and lhe terminator of 161. 

generated by knowledge of the band limits and assuming a square-root behaviour for the 
van Hove singularities at the band edges. 

This class of method is based upon the assumption that the continued fraction coefficients 
show an asymptotic trend, so the introduction of the tail does not bring about a strong 
deviation from the exact behaviour. Moreover, independent information about the density 
of states is required in order to obtain a more correct and realistic terminator. In many cases 
one or both of these requests are not satisfie& let us consider, as an example, the density 
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Figure 3. Density of stam 
for the simple square lanice 
calculated with 40 exact lev- 
els of the continued fraction 
and the single-band termina- 
tor evaluated wiu1: (a) the 
w m t  band h i l l  (-4. 4) 
and (b) slightly incorrect band 
limits (-4.1. 5.9). 

of states of a simple model system, the bidimensional square lattice, and suppose the we 
do not exactly know the band limits. Figure 3(a) represents the correct density of states, 
while in figure 3(b) we have the result of a termination calculated using incorrect band 
limits. The lack of knowledge about band limits and/or asymptotic behaviour of continued 
fraction coefficients is a common situation in the study of heterostructures and disordered 
systems. As an example, let us consider the surface projected density of states for the one- 
dimensional binary ordered alloy ABABAB.. . (figure 4); the Saxon-Hunter theorem [19] 
tells us which are the maximum allowable limits for the density of states, but the effective 
limits are smaller and cannot be evaluated. In the case of a disordered alloy the situation 
is even worse. For this kind of problem different techniques of termination, not based on 
previous knowledge of the features of the density of states, are required. 

2.2. Calculutions hased only on information contained in the confinuedfraclion 

We have seen that in many cases there is no additional information other than the one 
contained in the continued fraction coefficients, or, in an equivalent way, the moments of 
the Hamiltonian. In the technique of the quadratic Pad6 approximants [17,18] the diagonal 
matrix element of the Green function is expanded in a formal power series: 
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Figure 4. Surface-site-projected density of stales for the onedimensional regular alloy 
ABABAB.. . having diagonal energies 1 and - I  (full curve) and surface-site-projected for 
the pure A and pure B lauices (broken CulveS). 

where H is the Hamiltonian of the system and I@) is the state of interest on which we want 
to calculate the projected density of states, defined as 

After indicating the nth moment of the Hamiltonian (@IH"I@) by pn, and the argument 
1/E by x ,  we define the power series 

m ~~ 

G(x)  = C p L , - , x " .  (5) 
"=I 

If we consider three polynomials P:""(x), Pp'(x) and P?'(x) of degrees nl, nl  and n3 
such as 

P,(""(x)G*(x) + P ~ ' ( x ) c ( x )  + P ~ ' ( x )  = 0(~"1+"2+~3+~ 1 (6) 

we obtain an approximation for Coo(E) to order nl + n z  + n3 + 2. In fact, having defined 

(7) (n l  E )  E EflP'"' Pj ( ( I / E )  j =  1,2,3 

the solution g ( E )  of the equation 

py" (E)g2(E)  f p P ' ( E ) g ( E )  + @'(E)  = 0 ~ ~ (8) 

is coincident with G&(E) up to order n I + n2 + n3 + 2. So we have explicitly 
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with 

r ( E )  = ( p ? ' ( ~ ) ) *  - 4 p y " ( ~ ) p P ' ( ~ ) .  

It is possible to demonstrate that the corresponding value for the density of states is 

n ( ~ )  = I,GZ/(~~P~""(E))I r ( E )  < o (loa) 
n ( E )  = 0 otherwise. (lob) 

For example, in the case of the square lattice the moments are given by the simple relation 

and the density of states calculated up to degree n = 5 is reported in figure 5 (a comparison 
is possible with figure 3(a). 

The quadratic Pad6 approximant is not the only procedure that gives the density of states 
starting from the knowledge of the Hamiltonian moments without any extra hypothesis 
about the density of states itself; an alternative way to treat the problem is one based on the 
maximum entropy technique [ 13-15]. According to this approach one looks for a density 
of states n ( E )  which maximizes the value of the entmpy functional, defined as 

S[n(E)I = - n ( E )  In[n(E)]dE I 
under the constraints 

1 EXn(E)dE = fik. (13) 

It can be shown that the maximum entropy density of states must be of the form 

n ( E )  = explf(E)I (14) 

with 
M 

f(E) = 1 h ; E '  ( 1 3  
k 0  
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Figure 6. Density of states 
for the one-dimensional chain 
calculated with the maximum 

-1.0 -0.5 0.0 0.5 ,,o entropy method using a 9li-order 
cncrgyiaib “”# IS)  polynomial. 

where M is the number of known moments of the Hamiltonian, which is related to the 
number N of continued fraction coefficients by the relation 

M = 2 N - I .  (16) 

As an example, in figure 6 we report the density of states for the Hamiltonian of the one- 
dimensional chain with one orbital per site calculated in the framework of the maximum 
entropy formalism. 

Finally, we  consider the quadrature method [ZO]. This is essentially a technique for the 
evaluation of integrals with respect to a density of states n ( E )  of the type 

/ f (E)n(E)dE (17) 

by orthogonal polynomials generated using the continued fraction coefficients. In particular, 
if we consider the indefinite integral with f (E)  = 1 we obtain the integrated density of 
states 

E 
N(E)  = / n(E’)dE’ 

and by differentiating this last expression we get the density of states n(E) .  A comparison 
between quadrature and termination has been also made [Zl], showing the superiority of 
the second technique, at least when the internal singularities are sufficiently weak. 

Although of great utility in cases in which one cannot employ any further information 
than the calculated recursion coefficients, the methods presented in this subsection are subject 
to the strong limitations of numerical instability. In fact we are dealing with polynomials, 
and due to the finite precision of computers after a certain degree (for double precision 
calculations typically 20) the largest terms in the polynomial cannot be compared with the 
smallest ones. So, in the case of quadratic Pad6 approximanis, the results quoted in the 
literature [ 181 are obtained using extended precision. Moreover. in the case of the maximum 
entropy approach, the functional form of the exponential of a polynomial for the density of 
states allows the possibility of overflows when the range [-I: I ]  for the energy is exceeded. 

From the previous discussion it is clear that there are a number of cases in which 
neither the termination, quadratic Pad6 approximant, nor the maximum entropy approaches 
are appropriate for the calculation of the density of states. This may happen when we a~ 
dealing with complex systems, such as alloys, for which nothing can be said about the main 
features of the density of states, and we have at our disposal a number of continued fraction 
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coefficients that is sufficiently large to overcome the range of numerical stability of the 
methods based on polynomials but not enough to allow the individuation of an asymptotic 
behaviour of the coefficients. In such unlucky cases the best thing to do seems to be the 
direct resummation of the continued fraction truncated at a given order, adding a small 
imaginary part to the energy. Nevertheless in doing so a number of spurious oscillations in 
the density of states are introduced. The situation can be improved to a certain degree by the 
application of a technique presented in this paper, and based upon the following concept: if 
we consider the values for the density of states calculated at a given energy using continued 
fractions truncated at different orders, we obtain a numerical sequence approaching the 
exact value as the number of levels in the continued fraction goes to infinity. So, for every 
energy, this limiting value can be extrapolated by the use of some accelerated convergence 
procedures. The simplest of these procedures is indeed the averaging over a given number 
of values, but it is formally correct only in the case of oscillating sequences, and in any 
case it gives rather rough results. Instead, goad results can be obtained by the use of the 
so-called E-univariate algorithm, derived in the framework of the Pad6 approximant theory. 

3. Acceleration convergence procedure for numerical sequences 

We now consider the continued fraction expansion of the density of states of a Hamiltonian 
H at a given energy E: p(E). We indicate by ,?,(E) the summation of the continued 
fraction truncated at the  nth level; the exact value for p(E) will be 

p ( E )  = p,(E) = lim p,(E). (19) 

For any given value of E,  [p, ,(E)] may be considered as a numerical sequence converging 
to the exact value p ( E ) .  Now the basic idea of the method proposed here is simply the 
acceleration of the convergence of the numerical sequence by means of a technique based 
on the Pad6 approximant theory. 

First, we briefly recall the Pad6 approximant theory [22,23]. Let us consider a power 
series 

“+U2 

and two polynomials 

m 
p ( x )  = C U i X i  

i=l 

and 
n 

q ( x )  = hixi 
i d  

We indicate by ap the exact degree of the polynomial p(x),  and by wf the order of the 
power series f ( x )  (i.e. the degree of the first non-zero term in the series). Then the 
Pad6 approximation problem of order (m, n) for the series f ( x )  consists in finding two 
polynomials p ( x )  and q ( x )  such that 

a p C m  a q s n  w ( f q - p ) ? m + n + l .  (22) 
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The meaning of (22) is that in the series (fq - p ) ( x )  the coefficients of xi for i = 
0. I ,  . . . m + n must disappear. Condition (22) generates a set of linear equations for the 
coefficients ai and h; of p ( x )  and q(x ) .  It is clear that p ( x ) / q ( x )  is an approximation for 
the power series f (x ) .  In terms of p ( x )  and q ( x )  the approximant for f ( x )  of order (m, n)  
is defined as 

Now consider a sequence of real or complex numbers (ai} having a limit A: 

lim a; = A .  (24) i-rm 

Our problem is to find another sequence {bj]  converging faster to A, i.e. 

- 0. Ihi - A I  lim - - 
i-m la] - A I  

To do that we construct the power series 

i= I 

If we define the partial summations 

then we have 
F k ( l ) = a k  k = 0 , 1  .... 

We can approximate f (x) with the Pad6 approximant of order (i, i): rj.j(x); so we can put 

hi=r i . i ( l )  i = O , I  .... (2% 
It can be demonstrated [I61 that the convergence properties of the sequence (h i }  are the 
same or better than the original sequence (a i ] .  To evaluate the Pad6 approximants there are 
 several algorithms; the best for this case is the so-called +algorithm [24]. If we define 

(30) 
a recursive relation holds: 

lm-nl - - r l m . ~ )  

In our case (3 I ) takes the form 

with k, e = 0, 1 . . .. So we have 
IO1 E~ = r i , i ( l )  = hi. (33) 

In many cases (32) and (33) give rise to an evident improvement of the convergence 
properties of the original sequence. As an example, we show in table 1 a comparison 
between a; and hi for the sequence 

(3) 

In the following section we apply these results to the partial summations of a continued 
fraction expansion. 

1 
q = I + -  

0.5 + i*' 
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Table I .  Comparison between lhe sequence (34) ai = (0.5 4- i2)-' + 1 and Ihe sequence (bil 
derived by means of (32) and (33). 

hi ui i 

1.063 492063 492064 I .06060660660606l 4 
1.01492164575l388 1.027397260273973 6 
1.005 I68 505 576012 1.015 SO3 875 968 992 8 
I.002216006015733 I.009950248756219 IO 
1.001 064465653520 l.006920415224914 12 
1.000358 558 836865 1.005 089 058524 I73 14 
1.000470647 182837 I..003898635477583 16 
1.000272471993237 1.003081654098613 18 
1.000 I76283706360 l;Of2496878901373 20 
1.000 IO4075 994782 l.OO2063 983 488 I32 22 
1.000 11027224Ll315 1.001734605377277 24 
1.000068560075517 1.001478196600 148 26 

1.666666666666667 , 1222222222222222 2 

4. Application to density of states calculations 

The accelerated convergence procedure seen in general in the previous section can be applied 
to the sequence obtained from a continued fraction expansion truncated at progressive 
levels. Let us consider as an example the density of states of a cubic regular lattice. 
The Hamiltonian of the system is 

where [&) is a basis of localized states and the second summation is extended to the 
nearest neighbours. The density of states for this system is theoretically well known [251 
so it represents a good test for the termination procedures. 

The exact density of states for a simple cubic lattice is shown in figure 7(4. Now, if we 
have at our disposal only a limited number of continued fraction coefficients, we can simply 
truncate the continued fraction expansion by adding to the energy a small imaginary part 
(figure 7(h)), obtaining a number of spurious oscillations. To eliminate these oscillations one 
can increase the imaginary part of the energy, but operating in this way $e other features 
of the spectrum are lost. As a first correction to the direct truncation we can introduce a 
semi-empirical averaging procedure. Suppose that we have N coefficients at our disposal; 
we calculate at every energy E the values .oi(E) where the index i runs from a certain 
n < N to N ,  then we take the average: 

The density of states for the simple cubic lattice calculated with this procedure, and with 
the same number of coefficients and imaginary part of the energy as the one of figure 7(b), 
is shown in figure 7fc). A strong reduction of spurious oscillations is evident 

Finally, we apply the technique presented in the previous section for the convergence 
acceleration. As in the case of the average we take the last values of pi from i = n to 
i = N and then try to find the correct limit of the numerical sequence so obtained. The 
density of states for the simple cubic lauice calculated this way with the same parameters 
as figure 7(c) is presented in figure 7(4; a further reduction of spurious oscillations is now 
evident. 
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Figure 7. Density of states for the simple cubic lanice: (U) exact (b) Duncaied at N = 39 
coefficients of the continued fraction. the imaginary p m  of the energy is 0.18; (c) calculaled 
with the average procedure of (36) with n = 19 and N = 39: (a) calculaled with h e  convergence 
acceleration procedure by means of Ule c-univariale algorithm with n = 19 and N = 39. In (c) 
and (a) the imaginary p m  of the energy is slill0.18. 

5. Conclusions 

In this paper we have presented an original procedure for the termination of continued 
fraction expansions based on an accelerated convergence algorithm derived in the framework 
of the Pad6 approximant theory. We have focused our attention on the calculation of 
density of states, but the method can be applied to the continued fraction expansion of 
other quantities of interest. Considering the expansion to order n, p", as a term in a 
numerical sequence we use the e-univariate algorithm to extrapolate the limit pmr i.e. by 
hypothesis the exact value of the quantity p. As well as the other termination procedures, 
the method presented in this paper is a mathematical tool to extract the maximum physical 
information from a given set of continued fraction parameters; it reveals its utility in those 
cases in which no additional information about the density of states is at our disposal, and 
the number of continued fraction coefficients is too large to apply techniques based on 
orthogonal polynomials, but not large enough to individuate an asymptotical trend in the 
coefficients themselves. 
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