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Abstract. In this paper different methods for the calculation of densities of siates and other
physical quantities by their continued fraction expansions are compared, and a new technique is
presented. Continued fraction expansions truncated at different orders are considered as the terms
of a sequence convergent to a limiting value. The philosophy of the method is the acceleration
of such a sequence by means of appropriate algorithms. Operating in this way, we observe a
net reduction of spurious unphysical features of numerical origin in the results.

1. Introduction

The continued fraction method [1,2] is a very powerful tool for the evaluation of properties
of physical systems. Nevertheless, in applying it to practical cases a number of problems
arise; among these, the most important is termination. In fact, although 2 continued fraction
is in general made of infinite levels, we can deal only with a finite number of coefficients.
So the quantity calculated is an approximation, and we meet the problem of how to make
this approximation the best, )

In some cases so many coefficients are available that the result is in practice the same
as we could obtain with an infinite number of recursion levels [3,4], but in general this is
not possible. When we have only a few parameters and we try to evaluate the continued
fraction we obtain in the resuit a number of features with an unphysical origin. In order to
overcome this difficulty, and to extract the maximum physical information from a given set
of coefficients, a number of approximations have been proposed.

In what follows we will consider as the quantity of interest the electronic density of states
{DOs) of a solid. If it is possible to individuate one or more connected bands the introduction
of a terminator (whose analytical form is given in terms of the band limits) is possible [5].
More generzally, a terminating procedure, based on orthogonal polynomials to approximate
a density of states with an arbitrary number of connected bands with van Hove singularities,
has been proposed [6]. This class of methods can be easily extended to systems made up of
single components with well defined band limits, building average terminators [7,8]. In an
equivalent way we can evaluate a sequence of asymptotical coefficients and append them to
the continued fraction. Such a sequence may be exirapolated by the knowledge of the first
pairs of exact coefficients [9, 10]. Operating in this way further improvement is possibie
by choosing the appending procedure in an appropriate way [11]. Extrapolation techniques
may be also applied directly to the continued fraction itself, represented by means of some
orthogonal polynomials (e.g. Chebyshev polynomiais [12]).

Another approach to the problem of truncation of continued fractions is the so-called
maximum entropy procedure [13-15], in which we obtain the DOS by maximizing the
entropy of the information contained in the coefficients at our disposal.
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The method proposed in this paper is based on the convergence acceleration of the
sequence of values of the DOS calculated with different numbers of continued fraction
levels by means of a procedure derived in the framework of the Padé approximant theory:
the e-univariate algorithmn [16]. The use of Padé approximants to improve the convergence
of the expansion of physical quantities has already been used in the literature. In particular,
if we use the moments of the Hamiltortian to expand the Green function as a power series,
quadratic Padé approximants of the density of states may be calculated [17,18].

The present paper is organized as follows. A critical analysis of different techniques of
termination is given in section 2. Section 3 is devoted to a presentation of the accelerated
convergence procedure, and in section 4 its application to the calculation of densities of
states is considered. Stction 5 contains conclusions.

2. Different methods for the determination of the density of states

2.1. Termination procedures based on a knowledge of some features of the density of states

We briefly recall the definition of the continued fraction termination procedure: the
substitution of a continued fraction by a smaller cne whose rth level has the form

E —ay — b? t,(E). (H

The function #,(£) is called the terminator of the continued fraction. In many cases
additional physical information can be used in the determination of the density. of states;
this information is essentially the position of band edges and the presence of van Hove
singularities. Turchi and co-workers [5] have shown the relation between the position of
the band edges and the asymptotic behaviour of the continued fraction coefficients. This
fact may be used to write down the explicit form of analytical terminators in the case of
densities of states composed of one or more connected bands. For example, in the simplest
case of one single connected band it follows that the coefficients a, and b, follow damped
oscillations around their asymptotic values @ and b, so the one-band terminator is given by
the solution of the equation

1

HE) =g 1(E)

1))
Equation (2) is quadratic, and therefore has two solutions; we choose the solution which
gives the correct behaviour for £ — oo, In more complex cases of several connected
bands the oscillations of the coefficients are not damped, but an analytical expression for
the terminator is still possible. As an example, in figure 1 we present the density of states
of silicon calculated with 150 exact ievels of the continued fraction and the two bands
terminator. )

Following this line of thought, the next step is to exploit other known features of
the density of states (such as intemal van Hove singularities). Operating this way [6] it is
possible to obtain more accurate resuits. In practice, the procedure is the following: suppose
we have only the first n coefficients of a continued fraction expansion; first we construct
a model density of states having known physical features (e.g. band limits and van Hove
singularities) and by means of orthogonal polynomials we derive the coefficients of its
continued fraction expansion, and the analytical tail. Then, the terminator so calculated
is appended to the ‘true’ continued fraction. In figure 2 we report the density of states
for GaAs, which is a three-band system; the continued fraction is terminated with a tail
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Figure 1. Density of states for silicon catoulated with 130 axact levels of the continued fraction
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Figure 2, Density of states for gallium arsenide calculated with 100 exact levels of the continued
fraction and the terminator of [6).

generated by knowledge of the band limits and assuming a square-root behaviour for the
van Hove singularities at the band edges.

This class of method is based upon the assumption that the continued fraction coefficients
show an asymptotic trend, so the introduction of the tail does not bring about a strong
deviation from the exact behaviour. Moreover, independent information about the density
of states is required in order to obtain a more correct and realistic terminator. In many cases
one of both of these requests are not satisfied; Iet us consider, as an example, the density
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of states of a simple model system, the bidimensional square lattice, and suppose the we
do not exactly know the band limits. Figure 3(a) represents the correct density of states,
while in figure 3(b) we have the result of a termination caiculated using incorrect band
limits. The lack of knowledge about band limits and/or asymptotic behaviour of continued
fraction coefficients is a common situation in the study of heterostructures and disordered
systems. As an example, let us consider the surface projected density of states for the one-
dimensional binary ordered alloy ABABAB. .. (figure 4); the Saxon—Hunter theorem [19]
tells us which are the maximum allowable limits for the density of states, but the effective
limits are smaller and cannot be evaluated. In the case of a disordered alloy the situation
is even worse. For this kind of problem different techniques of termination, not based on
previous knowledge of the features of the density of states, are required,

2.2, Calcnlations based only on information contained in the continued fraction

We have seen that in many cases there is no additional information other than the one
contained in the continued fraction coefficients, or, in an equivalent way, the moments of
the Hamiltonian. In the technique of the quadratic Padé approximants [17, 18] the diagonal
matrix element of the Green function is expanded in a formal power series:

l &0
Goo(E) = (¢I—E_—H|¢) = (I/E) ) _{$IH"i$)(1/E") 3)

n={
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Figure 4. Surface-site-projected demsity of states for the one-dimensional regular alloy
ABABAB. .. having diagonal enetgies T and —1 (full curve) and surface-site-projected for
the pure A and pure B lattices (broken curves).

where H is the Hamiltonian of the system and |¢) is the state of interest on which we want
to calculate the projected density of states, defined as

n(E) = L lim Im ($I(E +in — H)7'|g). 4
T =0t

After indicating the nth moment of the Hamiltonian {¢|H"|¢} by iy, and the argument
1/E by x, we define the power series

Glx) = Zu,;_lx". - ) &)
n==l

If we consider three polynomials P (x), Pi(x) and PJ™(x) of degrees n, n, and n3

such as

P GHE) + PP ()G (x) + P37 (x) = o(xMHmtt?) (6)
we obtain an approximation for Ggy(E) to order ny + n2 + n3 + 2. In fact, having defined

p"(E) = E"P"(1/E) =123 .M
the solution g(£) of the equation

P (EIGH(E) + py (E)G(E) + p3™(E) =0 . 8)
is coincident with Goo(E) up to order ry + nz2 + n3 + 2. So we have explicitly

—py* N E) £ J/F(E)
zp:njl(E)

g(E) = {9a)
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with
r(E) = (p§(B)) — 4p\" (E)p{™(E). (9b)
1t is possible to demonstrate that the corresponding value for the density of states is
n(E) = tJ::T(? Wrp BN r(E) <0 (102)
n(E) = otherwise. (10b)

For example, in the case of the square lattice the moments are given by the simple relation

] -
Mzn=((f) panst =0 (1

and the density of states calculated up to degree r = 5 is reported in figure 5 (a comparison
is possible with figure 3(a).

0.20—
" 0.15
3
:z- a.1a .
0.05 ~
Figure 5. Density of states for
0.00 : the simple square lattice calcu-
’ o = A 2 i la!;cd using the method of [18]
energy (arb, unlts) with n = 15.

The quadratic Padé approximant is not the only procedure that gives the density of states
starting from the knowledge of the Hamiltonian moments without any extra hypothesis
about the density of states iiself; an alternative way to treat the problem is one based on the
maximum entropy technique [13—15]. According to this approach one looks for a density
of states #(E) which maximizes the value of the entropy functional, defined as

Sn(E)] = —fn(E) Injr(E)]AE (12)
under the constraints
f Efn(EYdE = uy. (13)

It can be shown that the maximum entropy density of states must be of the form

n(E} = exp[ f(E)} (14)
with

M
FEY =Y ME (15)

i=0
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where M is the number of known moments of the Hamiltonian, which is related to the
number N of continued fraction coefficients by the relation

M=2N-1 (16)

As an example, in figure 6 we report the density of states for the Hamiltonian of the one-
dimensional chain with one orbital per site calculated in the framework of the maximum
entropy formalism.

Finally, we consider the quadrature method [20]. This is essentially a technique for the
evaluation of integrals with respect to a density of states n{£) of the type

ff(E)n(E)dE (a7

by orthogonal polynomials generated using the continued fraction coefficients. In particular,
if we consider the indefinite integral with f(F) = 1 we obtain the integrated density of
states

E
N(E) = f n(EYE’ (18)

and by differentiating this last expression we get the density of states n(E). A comparison
between quadrature and termination has been also made [21], showing the superiority of
the second technique, at least when the internal singularities are sufficiently weak.
Although of great utility in cases in which one cannot employ any further information
than the calculated recursion coefficients, the methods presented in this subsection are subject
to the strong limitations of numerical instability. In fact we are dealing with polynomials,
and due to the finite precision of computers after a certain degree (for double precision
calculations typically 20) the largest terms in the polynomial cannot be compared with the
smallest ones. So, in the case of quadratic Padé approximants, the results quoted in the
literature { 18] are obtained using extended precision. Moreover, in the case of the maximum
entropy approach, the functional form of the exponential of a polynomial for the density of
states allows the possibility of overflows when the range [—1; 1] for the energy is exceeded.
From the previous discussion it is clear that there are a number of cases in which
neither the termination, quadratic Padé approximant, nor the maximum entropy approaches
are appropriate for the calculation of the density of states. This may happen when we are
dealing with complex systems, such as alloys, for which nothing can be said about the main
features of the density of states, and we have at our disposal a number of continued fraction
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coefficients that is sufficiently large to overcome the range of numerical stability of the
methods based on polynomials but not enough to allow the individuation of an asymptotic
behaviour of the coefficients. In such unlucky cases the best thing to do seems to be the
direct resummation of the continued fraction truncated at a given order, adding a smalil
imaginary part to the energy. Nevertheless in doing so a number of spurious oscillations in
the density of states are introduced. The situation can be improved to a certain degree by the
application of a technique presented in this paper, and based upon the following concept: if
we consider the values for the density of states calculated at a given energy using continued
fractions truncated at different orders, we obtain a numerical sequence approaching the
exact value as the number of levels in the continued fraction goes to infinity. So, for every
energy, this limiting value can be extrapolated by the use of some accelerated convergence
procedures. The simplest of these procedures is indeed the averaging over a given number
of values, but it is formally correct only in the case of oscillating sequences, and in any
case it gives rather rough results. Instead, good results can be cobtained by the use of the
so-called e-univariate algorithm, derived in the framework of the Padé approximant theory.

3. Acceleration convergence procedure for numerical sequences

We now consider the continued fraction expansion of the density of states of a Hamiltonian

H at a given energy E: p(E). We indicate by p,(E) the summation of the continued
fraction truncated at the nth level; the exact value for p(£) will be

P(E) = poo(E) = lim py(E). (19)

For any given value of E, {p,(E)} may be congidered as a numerical sequence converging
to the exact value p(£). Now the basic idea of the method proposed here is simply the
acceleration of the convergence of the numerical sequence by means of a technique based
on the Padé approximant theory.

First, we briefly recall the Padé approximant theory [22,23]. Let us consider a power

series

f)=co+eax+ex+... (20)

and two polynomials
plx) = ia:x" (21a)
i=l
and
glx) = ib,-x". ) (21b)
i=l

We indicate by dp the exact degree of the polynomial p(x), and by wf the order of the
power series f(x) (i.e. the degree of the first non-zero term in the series). Then the
Padé approximation problem of order (m, n) for the series f(x) consists in finding two
polynomials p(x) and g{x) such that

Ip<m dg =n olfg—p)=m+n+1. 22
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The meaning of (22) is that in the series (fg — p)(x) the coefficients of x/ for i =
0,1,...m + n must disappear. Condition (22) generates a set of linear equations for the
coefficients a; and &; of p(x) and g(x). It is clear that p(x}/q(x) is an approximation for
the power series f{x). In terms of p(x) and g(x) the approximant for f(x) of order (m, n)
is defined as

(x)
Fantey = 25 @3)
q(x)
Now consider a sequence of real or complex numbers {a;} having a limit A:
lim g; = A. 24)
=00

Our problem is to find another sequence {b;} converging faster to 4, i.e.
. |bi — Al
Hm —— =0

=0. 25
i—oo |a; — Al (25
To do that we construct the power series
o]
F&) =a+ Y (@ —a-0)x'. (26)
i=1
If we define the partial summations
&
Fex) =ao+ Y _(a; = ai1)x’ 27)
=i
then we have
Fk(l)=ak k=0,1.... (28)
We can approximate f(x) with the Padé approximant of order (7, {): r;;{x); s0 we can put
b; = r (1) i=0,1.... 29)

It can be demonstrated [16] that the convergence properties of the sequence (&;} are the
same or better than the original sequence {a;}. To evaluate the Padé approximants there are
-several algorithms; the best for this case is the so-called e-algorithm [24]. If we define

{m—n}
€2y = fintmy (30)
a recursive relation holds:
(m—n) __ _(ar=n+1) 1
€om =€ T moan oo 3L
i |

In our case (31) takes the form

(€} {&+1)

=0 '=FR=a e =l + (32)

D D
& —&

with £, £=0,1.... So we have
ey =rii(1) = b (33)
In many cases (32) and (33) give rise 10 an evident improvement of the convergence

properties of the original sequence. As an example, we show in table 1 a comparison
between a; and b; for the sequence

(34

In the following section we apply these Tesults to the partial summations of a continued
fraction expansion,
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Table 1. Comparison between the sequence (34) ar = (0.5 + i®)~! 4 1 and the sequence {i}

derived by means of (32) and (33).

bl' a i

1.666 666 666 666 667 1.222222222222222 2
1.063 492063 492064 1060 606 606 606 061 4
1.014921 645 751 388 1.027 397260273973 6
1.005 168 505 576012 1.0T5 503 875968 992 8
1.002216 006015 733 1.009950248 756219 10
1.001 064 465 653 520 1.006 920415 224914 12
1.000 358 558 836 865 1.005089 058 524173 14
1.000470647 182837 1.003 898 635 477 583 i6
1.000272471 993237 1.003 081 654098613 8
1.000 176283 706 360 1.002496878901 373 20
1.000 104075594 782 1.002063 983 488 132 22
1.000 110272240315 1.001 734605377277 24
1.000 068 560075517 1.001 478 196 600 148 26

4. Application to density of states calculations

The accelerated convergence procedure seen in general in the previous section can be applied
to the sequence obtained from a continued fraction expansion truncated at progressive
levels. Let us consider as an example the density of states of a cubic regular lattice.
The Hamiltonian of the system is

nn

H =Y geldil+ ) i)t @;] (35)

i ey ‘
‘where {¢;} is a basis of localized states and the second summation is extended to the
nearest neighbours. The density of states for this system is theoretically well known {25]
so it represents a good test for the termination procedures.

The exact density of states for a simple cubic lattice is shown in figure 7(a). Now, if we
have at our disposal only a limited number of continued fraction coefficients, we can simply
truncate the continued fraction expansion by adding to the energy a small imaginary part
{figure 7(b)), obtaining a number of spurious oscillations. To eliminate these oscillations one
can increase the imaginary part of the energy, but operating in this way the other features
of the spectrum are lost. As a first correction to the direct truncation we can introduce a
semi-empirical averaging procedure. Suppose that we have N coefficients at our disposal;
we calculate at every energy E the values p;(E) where the index [ runs from a certain
n < N to ¥, then we take the average:

- o~ oiE)
p’(E)_;N—n+1' (36)
The density of states for the simple cubic lattice calculated with this procedure, and with
the same number of coefficients and imaginary part of the energy as the one of figure 7(d),
is shown in figure 7(¢). A strong reduction of spurious oscillations is evident.

Finally, we apply the technigue presented in the previous section for the convergence
acceleration. As in the case of the average we take the last values of p; from i = n to
i = N and then try to find the correct limit of the numerical sequence so obtained. The
density of states for the simple cubic lattice caiculated this way with the same parameters

as figure 7(¢) is presented in figure 7(d); a further reduction of spurious oscillations is now
evident.
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Figure 7. Density of states for the simple cubic lattice: (@) exact; (b) truncated at N = 39
coefficients of the continued fraction, the imaginary part of the energy is 0.18; (&) calculated
with the average procedure of (36) withn = 19 and N = 39; (d) calculated with the convergence
acceleration procedure by means of the ¢-univariate algorithm with n = 19 and N = 39. In {¢)
and (¢) the imaginary part of the energy is still 0.18.

5. Conclusions

In this paper we have presented an original procedure for the termination of continued
fraction expansions based on an accelerated convergence algorithm derived in the framework
of the Padé approximant theory. We have focused our attention on the calculation of
density of states, but the method can be applied to the continued fraction expansion of
other quantities of interest. Considering the expansion to order n, p,, a5 a term in a
numerical sequence we use the e-univariate algorithm to extrapolate the limit p. i.e. by
hypothesis the exact value of the quantity p. As well as the other termination procedures,
the method presented in this paper is 2 mathematical tool to extract the maximurn physical
information from a given set of continued fraction parameters; it reveals its utility in those
cases in which no additional information about the density of states is at our disposal, and
the number of continued fraction coefficients is too large to apply techniques based on
orthogonal polynomials, but not large enough to individuate an asymptotical trend in the
coefficients themselves.
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